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Abstract. We describe an adaptive procedure that approximates a function
of many variables by a sum of (univariate) spline functions s, of selected
1inear combinations a, -’ x of the coordinates

¢(x) = 2 s (a_ -+ x)

1JsmM MM

The procedure is nonlinear in that not only the spline coefficients but
also the linear combinations are optimized for the particular prob]em

The sample need not 1ie on a regular grid, and the approximation is affine
invariant, smooth, and lends itself to graph1ca1 interpretation. Function
values, derivatives, and integrals are inexpensive to evaluate.

(Submitted to SIAM Journal of Scientific & Statistical Computing)

This work was supported by the Department of Energy under contract
DE-~ACO3-76SF00515 and DE-AT03-81-ER108 43, the Office of Naval Research
under contract ONR N0O014-81-K-0340, and the National Science Foundation
under grant MCS 78-17697.




1. Introduction

Multidimensional surface approximation is recognized as an important
problem for which several methodologies have been developed. The aim is
to construct an approximation ¢(x) to a p-dimensional surface Y= f(x) on
the basis of {possibly noisy) observations {(yi’xi)}lsisn‘ Most existing
methods, such as tensor product splines, kernels, and thin plate splines
(for a survey, see Schumaker [1976]), are linear ir that

o(x) = 2wy
1<i<n

where the weights {wi} depend only on x and {xi}1sisn’ but not on
{yi}lsisn' These methods have the advantage that they are straightforward
to compute and their theory is tractable. In practice, however, they are
limited because they cannot take advantage of special properties of the
surface. Due to the inherent sparsity of high-dimensional sampling,
procedures successful in high dimensions must be adaptive and thus non-
linear.

In this paper we describe an adaptive procedure that approximates
f(x) by a sum of (univariate) spline functions S of selected linear

combinations a, * X of the coordinates

U

¢(x) = ]S;M Spldy = %) (M

The procedure is nonlinear in that not only the spline coefficients but

also the linear combinations are optimized for the particular problem.




2. The Algroithm

The spiine function Sm along a. " X is represented as a sum of jm

B-splines [de Boor, 1978] of order q

-x)= 2 g .B .la - x). (2)
’lsjsjm mj my--m

The approximation ¢(x) (given by equations (1) and (2)) is specified by

the directions {am} M the knot sequences along a, * X for l=ms<M, and

Ismg

the B-spline coefficients {ij For particular {am}, the

Nameh, 1555, .
knots are placed heuristically and then the {smj} are dezarmined by
(1inear) least squares. The residual sum of squares from this fit is
taken to be the inverse figure of merit for {am}]smsM'

Following Friedman and Stuetzle [1981], the approximation is con-
stiructed in a stepwise manner: given {am}lsmsM-l’ find aM to optimize the

figure of merit of {am} Terminate when the figure of merit is below

1<mgM®
a user specified threshold.
3. mplementation

A difficult part of the algorithm is finding each direction an We
perform a numerical search using a Rosenbrock method [Rosenbrock, 1966].
This method is easily modifiable to search over the unit sphere. We have
found empirically that each iteration of the optimizer requires approx-
imately 3.5p function evaluations, where p is the dimension of x. Two
iterations are nearly always sufficient. As the search usually starts far
from the solution and the solution does not have to be obtained with high

precision, it does not seem likely that optimization procedures that

estimate the Hessian would do better.

-




3

For high dimensionality, the computation is dominated by the
evaluations of the object function. Since it is not crucial to find the
precise optimum, considerable savings are achieved by substituting a
similar, but much less expensive figure of merit during the search for a
new direction. For this figure of merit not only the previously found
directions but also the corresponding spline coefficents are held fixed.
For a given direction, the residuals are modelled by (basically) a moving
average smooth [see Friedman and Stuetzle, 1981] The characteristic
bandwidth (the fraction of observations over which averaging takes place)
is taken to be inversely proportional to the number of krnots. The residual
sum of squares from the smooth is the figure of merit used for the smooth.
Solving the least squares problem for the original figure of merit requires

0 I-n( = jm)é]

T1smsM
operations, while the new figure of merit can be evaluated in roughly n

operations using updating formulas for the moving average. The least
squares problem has to be solvad only once for each iteration to determine
the new model after a. has been found.

To solve the least squares probiem, we form the normal equations and
use a pseudo-inverse, since the design matrix might not have full rank.
The singularity which arises from the inclusion of a constant term for
each direction is remedied by simply dropping one column per direction
from the design matrix. Higher order singularities caused, for example,
by the 1inear terms for three co-planar directions, are not explicitly

taken care of, but are handled by the pseudo-inverse.
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Our knot placement procedur: 1¢ motivated by the sequential nature
of the algorithm. At each iteration, the knot positions are required for
the least squares fit, after the new direction has been found. Qur model
at this point is the spline fit of the previous iteration, plus the
moving average smooth along the newly found direction. The knot placement
is based on the residuals {ri} from this model. Multidimensional structure
in these residuals due to incompleteness of the model manifests itself as
high local variability in the scatterplots of r; against an -+ Xy In
order to preserve the ability of fitting this structure in further
iterations, it is important to avoid accounting for it by spurious fits
along existing directions. For this reason we place fewer knots in
regions of higher local variability. Since the residuals change, the
knots are replaced along all directions at each iteration.

The knots along a direction a are placed as follows: the smooth

described above is applied to {(ri’am'xi)}lsisn and the local variability

vy at euch point is taken to be the average squared residual from its
local linear fit. The Winsorized local variabilities are defined by

2V if Vi > 2v

241 . 1
wi={ oV if vy <oV
& otherwise
R T - 1
(where v = - LJ]Siani), and then are scaled so that ZJ]sisn MR

\
The knots {t } are placed to divide the 1ine into intervals with equal

content of é.:

1




for each £, 1 - 2 1
p-a+ ] N W,
m T2t T )

4. Procedure parameters

The operation of the procedure is controlled primarily by two
parameters; these are the number of knots taken along each direction and
the termination threshold. Both parameters can be adjusted using graphical
output produced by the program. The adequacy of the number of knots and
their placement can be judged by examination of the residuals from the
final model plotted against each a, " X A systematic pattern in any one
of these plots indicates that either the number of knots is too small or
that the knot placement algorithm did not perform well. Another indication
that the number of knots might be insufficient is that the procedure
chooses nearly tne same direction twice, thereby effectively doubling the
number of knots placed along that direction.

The value set for the termination threshola determines the number of
terms making up the model. Various criteria can be used to decide whether
a particular term should be included. 1In the case of noisy data, one can
ask whether a term is significantly different from zero (given all previous
terms), or whether the addition of the term reduces the predictive mean
squared error of the model. Also, considerations outside the data having
to do with the problem setting can influence such a decision. In order to

judge statistical significance, it is necessary to know, by how much one
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would expect an additional term to increase the figure of merit if
there were no structure in the residuals. This can be estimated with a
permutation test. The residuals (from the previous terms) are randomly
permuted among the obervations, thereby guaranteeing no structure in the
(permuted) data. MASA is appiied to these residuals and the increase in
figure of merit noted. This process can be repeated, obtaining a (null)
distribution of the figure of merit. Either formal or informal
hypothesis testing techniques can then be used to judge whether the
nonpermuted figure of merit is significant.

The optimal number of terms with respect to prediction error can be
estimated by cross validation. The observations are randomly divided
into L (typically 5-10) subsamples. Each of the subsamples are in turn
set aside and the model constructed from the remaining observations.

Each observation is set aside exactly once. The mecn squared prediction
error averaged over the set aside observations is taken as an estimate of
the model mean squared error. Such as estimate can be made for models
with differing numbers of terms and that model minimizing the cross
validated mean-squared error estimate is then selected. Both permutation
tests and cross validation can be implemented in a small driver routine
which calls MASA repeatedly.

5. Examples

In this section we present and discuss the results of applying the
Multidimensional Spline Approximation method (MASA) to four examples. (A
FORTRAN program implementing MASA is available from the authors.) The

first three examples were suggested elsewhere for testing surface
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approximation procedures. The function in the fourth example was
studied in connection with a problem in mathematical genetics.

The first example is taken from Friedman [1979]. In this example
uniformly distributed random points {xi | 1< i< 200} were generated in
the six-dimensional hypercube [0,1]6. Associated with each point X; was

a surface value
y; = 10 sin (mx;(1)x;(2)) + 20[x;(3)-0.53% + 10x,(4) + 5x,(5) + Ox;(6)+¢,,

where the {61} were independent identically distributed standard normal.
The inverse figures of merit for the approximation with M = 1,...,4 terms
were 6.71, 4.29, 1.87, 0.97. In three restarts, the figure of merit did
not decrease below 0.86, so M = 4 was chosen. The four linear combinations
and the corresponding spline functions are shown in figures 1.1-1.4,
(The function value is plotted on the vertical axis, a - x on the horiz-
ontal axis. The "+" signs on the bottom of the graph indicate the knot
positions. A "+" sign followed by a number indicates multiple knots.)
For completeness, the program parameters are also 1isted; see comments in
the program source code for a detailed explanation.) The spline along the
first linear combination (figure 1.1) is seen to model the linear part
of the surface. The second term in the approximation (figure 1.2) models
the additive quadratic dependence on x(3). The final two terms (figures
1.3, 1.4) model the interaction between x(1) and x(2). The L, norm of the
error ||f - ¢”2 was 0.57.

Although the full advantages of MASA compared to other procedures
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are realized in higher dimensional or noisy settings, we applied it to

two bivariate examples used by Franke [1979] to compare a number of
interpolatory surface approximation schemes. For both examples 100
uniformly distributed random points in the unit square [0,1]2 were

generated. The function in Franke's first example is

2 2
F(x,y) = 0.75 exp[— (=2 + (9y-2)" 4

2
+0.75 exp[—--(g%]—L - 2%%1—3

+0.5 exp[- (9x-7)° Z (9-3)° ]
+0.2 exp[-(gx-4)2 - (9y—7)2]

Considerations similar to those in the previous example led to an
approximation with three terms. The linear combinations and
corresponding spline functions are shown in figures 2.1-2.3.

The function in Franke's second example is

£(x,y) = ‘5 [tanh(9y-9x) + 1].

for this case the approximation used only one term, shown in figure 3.1.

Since different random points were used in Franke's and our tests,

precise comparisons are not possible. On the first example, MASA gave
roughly an order of magnitude larger errors than the best methods in

Franke's trials (global basis function methods) while on the second
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example, MASA gave an order of magnitude smaller errors than the best
methods. These results are not surprising since the peak-shaped basis
functions of the global basis methods are especially suited for
representing the peaks of the first example, whereas the ridge-shaped
basis functions of MASA are especially suited to the second example.
Unfortunately, peak-shaped basis functions are not appropriate for
moderate or higher dimensionality. The difficulty is that in order to
achieve a smooth fit, the width of the basis peaks needs to be
comparable to the distance between data points. For n uniformly distributed
random points in a p-dimensional hypercube [0,1]p, the typical nearest
neighbor distance is (%)E . In particular for n = 1000 and p = 10, this
distance is 0.5, and for p = 20 is 0.7. Thus variation of the surface
over distances small compared to such large interpoint distances cannot
be well approximate& with these global basis functions methods.

Our final example is a 19-dimensional function encountered by
Carmelli and Cavalli [1979]. An important question is the structure of
this function near its minimum. We sampled the function at 200 points
uniformly distributed in a small hypercube centered at the minimum
found by numerical optimization and applied MASA. The inverse figure of
merit for the best constant fit was 13.3. The inverse figure of merit for
M =1 was 0.78. In 30 restarts, the figure of merit did not decrease
below 0.42. Figure 4.1 gives the linear combination and corresponding
spline function. This shows that most of the structure in the
1ikelihood function is revealed in this one projection. The structure

certainly would not be easy to find by just looking at the definition of




10
the function, and we know of no other approximation method that would

yield this kind of information.

6. Discussion

MASA can be expected to work well to the extent that the surface can
be approximated by a function of the form (1). Of course in the limit

M- « all smooth surfaces can be represented by (1), but even for moderate

? M functions of this form constitute a rich class.
| As seen in the previous section, an advantage of using essentially
one-dimensional basis functions is the possibility of graphical
interpretation. The entire model can be represented by graphing
sm(am - X) against a, * x and by specifying {am}]smsM (perhaps graphically
for p = 2 or 3). Additionally the graphical output is very helpful for
setting the main procedure parameters, the number of knots along each
direction and the termination threshold. Proper termination of the
algorithm can be assured by monitoring at each iteration the plot of the
residuals from the model of the previous iteration along the newly found
direction.

The problem of sparse sampling in high dimensions is not encountered,

since MASA is fitting one~-dimensional projections of the entire sample.

The sample need not 1ie on a regular grid, and the approximation is affine

jnvariant and smooth. Function values, derivatives, and integrals are

inexpensive to evaluate. In addition, since the approximation is locally

quadratic for q = 3, optimization algorithms can be expected to converge

rapidly. As only the directions, the knot positions and the B-spline

i
i
i
i
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coefficients have to be stored, MASA produces a very parsimonious

description of the surface.
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 2
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MULTIDIMENSIONAL. ADDITIVE SPLINE APPROXIMATION (4,19/920)
PARAMETERS FORl'(I“E,!IS RUN

NOBS
NPRED

MODE 2
MAXTRY 2
MAXPRO 1
PPCONV . 150200
MAXIT 3
KORDER 3
MAXFNO 1
BANFAC 1. 60000
IPRINT 3
NPRINT 1

PLOTRM 5]
AVERAGE SQUARED RESIDUAL AROUND THE MEAN 149743
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 1
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MULTIDIMENS IONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FOR THIS

NOBS 14

NPRED 2
MODE 2
MAXTRY 2
MAXPRO 1
PPCONV 150
MAXIT 4
KORDER 3
MAXKNO 30
BANFAC .803000

IPRINT 3

NPRINT 1

PLOTRA .0

AVERAGE SQUARED RESIDUAL AROUND THE MEAN  .972118E-82
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SPLINE FUNCTION AND KNOTS ALOMG DIRECTION NR 1
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MULTIDIMENSIONAL ADDIxIVE SPLINE APPROXIMATION (4/19/8)
PARAWLTrhS FCr THIS RUN
NOBS 209
NPRED 19
MODT 2
MAXTRY 2
MAXPRO 2
PPCONV .150000
MAXIT 2
KORDER 4
MAXIKNC 11
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